Cross-Domain Recommendation via Cluster-Level Latent Factor Model
نویسندگان
چکیده
Recommender systems always aim to provide recommendations for a user based on historical ratings collected from a single domain (e.g., movies or books) only, which may suffer from the data sparsity problem. Recently, several recommendation models have been proposed to transfer knowledge by pooling together the rating data from multiple domains to alleviate the sparsity problem, which typically assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. In practice, however, the related domains do not necessarily share such a common rating pattern, and diversity among the related domains might outweigh the advantages of such common pattern, which may result in performance degradations. In this paper, we propose a novel cluster-level based latent factor model to enhance the cross-domain recommendation, which can not only learn the common rating pattern shared across domains with the flexibility in controlling the optimal level of sharing, but also learn the domain-specific rating patterns of users in each domain that involve the discriminative information propitious to performance improvement. To this end, the proposed model is formulated as an optimization problem based on joint nonnegative matrix tri-factorization and an efficient alternating minimization algorithm is developed with convergence guarantee. Extensive experiments on several real world datasets suggest that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.
منابع مشابه
Improving Cross-Domain Recommendation through Probabilistic Cluster-Level Latent Factor Model
Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we prop...
متن کاملImproving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model-Extended Version
Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we prop...
متن کاملTop-N Recommendation via Joint Cross-Domain User Clustering and Similarity Learning
A cross-domain recommendation algorithm exploits user preferences from multiple domains to solve the data sparsity and cold-start problems, in order to improve the recommendation accuracy. In this study, we propose an efficient Joint cross-domain user Clustering and Similarity Learning recommendation algorithm, namely JCSL. We formulate a joint objective function to perform adaptive user cluste...
متن کاملCross domain recommendation based on multi-type media fusion
Due to the scarcity of user interest information in the target domain, recommender systems generally suffer from the sparsity problem. To alleviate this limitation, one natural way is to transfer user interests in other domains to the target domain. However, objects in different domains may be in different media types, which make it very difficult to find the correlations between them. In this ...
متن کاملDomain-aware reputable service recommendation in heterogeneous manufacturing service ecosystem
Networked manufacturing becomes an important manufacturing method for modern manufacturing enterprises. With the wide adoption of service-oriented architecture and cloud manufacturing, manufacturing enterprises and organisations publish their manufacturing capability, such as resources, processes and knowledge as manufacturing services. A rapidly growing manufacturing service ecosystem can be o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013